Geodesic Saliency Using Background Priors

نویسندگان

  • Yichen Wei
  • Fang Wen
  • Wangjiang Zhu
  • Jian Sun
چکیده

Generic object level saliency detection is important for many vision tasks. Previous approaches are mostly built on the prior that “appearance contrast between objects and backgrounds is high”. Although various computational models have been developed, the problem remains challenging and huge behavioral discrepancies between previous approaches can be observed. This suggest that the problem may still be highly ill-posed by using this prior only. In this work, we tackle the problem from a different viewpoint: we focus more on the background instead of the object. We exploit two common priors about backgrounds in natural images, namely boundary and connectivity priors, to provide more clues for the problem. Accordingly, we propose a novel saliency measure called geodesic saliency. It is intuitive, easy to interpret and allows fast implementation. Furthermore, it is complementary to previous approaches, because it benefits more from background priors while previous approaches do not. Evaluation on two databases validates that geodesic saliency achieves superior results and outperforms previous approaches by a large margin, in both accuracy and speed (2 ms per image). This illustrates that appropriate prior exploitation is helpful for the ill-posed saliency detection

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Saliency Detection via Fusing Foreground and Background Priors

Automatic Salient object detection has received tremendous attention from research community and has been an increasingly important tool in many computer vision tasks. This paper proposes a novel bottom-up salient object detection framework which considers both foreground and background cues. First, A series of background and foreground seeds are extracted from an image reliably, and then used ...

متن کامل

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

Unified Saliency Detection Model Using Color and Texture Features

Saliency detection attracted attention of many researchers and had become a very active area of research. Recently, many saliency detection models have been proposed and achieved excellent performance in various fields. However, most of these models only consider low-level features. This paper proposes a novel saliency detection model using both color and texture features and incorporating high...

متن کامل

Salient Object Detection with Semantic Priors

Salient object detection has increasingly become a popular topic in cognitive and computational sciences, including computer vision and artificial intelligence research. In this paper, we propose integrating semantic priors into the salient object detection process. Our algorithm consists of three basic steps. Firstly, the explicit saliency map is obtained based on the semantic segmentation ref...

متن کامل

A Novel Approach to Background Subtraction Using Visual Saliency Map

Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012